
Pavement Analyst Finest Partition

Finest Partition Report
Point Data
Dealing with Directional Data

Finest Partition System Executable

Finest Partition Report
Finest partition is a method by which you can take data from multiple different tables (i.e., different sets of segmentation) within the system and combine
them to produce one output dataset that has homogeneous attributes from across different sets of segmentations. This is done by utilizing the concept of F

.inest Partition

Finest Partition is the smallest set of Linearly Referenced sections that encompass all the lateral and longitudinal breaks across and input data set. This
is best illustrated by some simple examples. Suppose we wish to produce a report that combines data from a traffic table listing AADT counts with a table
that lists crack index ratings. In the following example, we are combing results from various datasets on a single Route: 999999. The route is 10 miles
long.

Traffic data:

Route Dir Lane From To AADT

999999 All All 0 2 10,000

999999 All All 2 4 12,000

999999 All All 4 6 9,000

999999 All All 6 10 15,000

Cracking data:

Route Dir Lane From To Crack Index

999999 All All 0 4 3.0

999999 All All 4 5 3.2

999999 All All 5 7 3.4

999999 All All 7 10 2.8

The finest partition of these two data sets will create a new table that contains all the section breaks required to fully breakdown both tables. The table
below shows the result of the finest partition process on the example data sets. Note that every milepoint from both datasets are present in the resulting
data set. This gives a smallest breakdown of the output dataset.

Route Dir Lane From To Crack Index AADT

999999 All All 0 2 3.0 10,000

999999 All All 2 4 3.0 12,000

999999 All All 4 5 3.2 9,000

999999 All All 5 6 3.4 9,000

999999 All All 6 7 3.4 15,000

999999 All All 7 10 2.8 15,000

Finest Partition Example:

Point Data

One special case of the finest partition process is dealing with data that is stored as points rather than linear events. Continuing the example above,
suppose we add in another point-based data set containing descriptions of specific milepoints within the system.

Route Dir Lane From To Description

999999 All All 0 0 Start Route 999999

999999 All All 1.5 1.5 Intersection Route 999998

999999 All All 2.3 2.3 Driveway Left

999999 All All 7 7 Entrance Shopping Center

999999 All All 8.5 8.5 Intersection Route 999997

When using point-based data sets, the finest partition process will simply insert breaks into the output dataset wherever the points are located. So, the
output from the example included the point events would appear as listed in the table below.

Note: In this table extra breaks were added where the point data occurred. The attribute information from the two other tables are just applied normally.

Route Dir Lane From To Crack Index AADT

999999 All All 0 1.5 3.0 10,000

999999 All All 1.5 2 3.0 10,000

999999 All All 2 2.3 3.0 12,000

999999 All All 2.3 4 3.0 12,000

999999 All All 4 5 3.2 9,000

999999 All All 5 6 3.4 9,000

999999 All All 6 7 3.4 15,000

999999 All All 7 8.5 2.8 15,000

999999 All All 8.5 10 2.8 15,000

When dealing with point data however the “Description” information must be applied in a different matter since the description only applies to the beginning
or ending point of each output data section. Consider the “Driveway Left” description that occurs at milepoint 2.3, it is a valid description for “to” point of
the section from 2 through 2.3 and it is a valid description of the “from” point of the section starting at 2.3 through 4. For this reason, we must have 2
output columns in the resulting data set to show the proper point-based data attributes for the from and to locations on each output section.

Route Dir Lane From To Crack Index AADT From Description To Description

999999 All All 0 1.5 3.0 10,000 Start Route 999999 Intersection Route 999998

999999 All All 1.5 2 3.0 10,000 Intersection Route 999998

999999 All All 2 2.3 3.0 12,000 Driveway Left

999999 All All 2.3 4 3.0 12,000 Driveway Left

999999 All All 4 5 3.2 9,000

999999 All All 5 6 3.4 9,000

999999 All All 6 7 3.4 15,000 Entrance Shopping Center

999999 All All 7 8.5 2.8 15,000 Entrance Shopping Center Intersection Route 999997

999999 All All 8.5 10 2.8 15,000 Intersection Route 999997

Dealing with Directional Data

Sometimes the input data sets include data that is directional, which means that the data does not apply to both directions of travel. This is also handled
by the finest partitioning process by splitting the incoming data sets into its component directions as well. This requires some more information to be made
available about the network. In order to properly split data laterally we must know how many directions are valid within the network at any given point. For
example, a route that is two-way its whole length has 2 valid directions at any given point along its length. If a route were one-way its whole length, then it
would only have one valid direction at any point. Usually with divided and undivided routes it is possible for a route to contain a mix of two-way and one-
way sections along its length. In the following example, Route 999999 has a short portion between miles 2.6 and 3.2 where the route goes through a town
and is one side of one-way couplet in town. Therefore, between 2.6 and 3.2 there is only one valid direction, for discussion this direction will be the
ascending mile posting direction. Conceptually this might look like following figures.

Information about directionality is stored in a special network definition table within the system called “NETWORK_LINE_DIRECTIONS.” This table
contains information about how many directions are valid at any given point along each defined route. For this example the data contained in
NETWORK_LINE_DIRECTIONS is as listed in the table below.

Route Dir Lane From To

999999 Asc All 0 10

999999 Desc All 0 2.6

999999 Desc All 3.2 10

The data structure contains only information where a particular direction is valid. In this case the Ascending Direction is valid for the whole length on the
route, but the descending direction is only valid for the milepoint ranges 0 to 2.6 and 3.2 to 10.

To expand the example Finest Partition, we will add in another table with Pavement Type Information that is stored on a directional basis, as in the table
below.

Route Dir Lane From To Pavement Type

999999 Asc All 0 4 AC

999999 All All 4 5 AC

999999 All All 5 7 PCC

999999 All All 7 10 PCC

999999 Desc All 0 2 Composite

999999 Desc All 3.5 4 Composite

The addition of directional data into the finest partitioning process introduces some extra complexity that should be understood in setting up a Finest
Partition report. To begin the system will start by looking at all unique breaks from the source data within a route and then looking at how many distinct
directions exist in the source data within each of those sections, as shown in the table below.

Route From To Number of Directions in Source Data

999999 0 1.5 3 (All, Asc, Desc)

999999 1.5 2 3 (All, Asc, Desc)

999999 2 2.3 2 (All, Asc)

1.
2.

3.
4.
5.

999999 2.3 3.5 2 (All, Asc)

999999 3.5 4 3(All, Asc, Desc)

999999 4 5 1 (All)

999999 5 6 1 (All)

999999 6 7 1 (All)

999999 7 8.5 1 (All)

999999 8.5 10 1 (All)

Sections in the table above that have only 1 distinct direction in the source data may be moved directly into the final output of the process as no further
partitioning is required. In this example all the sections starting at mile 4 or higher only have one direction defined across all the source data. These are
put immediately into the output table, shown in the table below leaving only the miles from 0 to 4 to be processed further.

Route Dir Lane From To Crack Index AADT Pavement Type From Description To Description

999999 All All 4 5

999999 All All 5 6

999999 All All 6 7

999999 All All 7 8.5

999999 All All 8.5 10

The next step in the process is to consider breaks on each direction individually. This is a 4-step process:

Start with the remaining contiguous sections of the road (no breaks within each contiguous section).in the direction of interest
Add in any breaks for that direction listed in the NETWORK_LINE_DIRECTIONS table. If the source data has (All) Direction, it will also remove
any portions not covered within NETWORK_LINE_DIRECTIONS.
Add in any additional breaks from the source data
Copy the resulting sections into the output with the Direction field set to the direction of interest.
Go back to step one for any additional directions of interest

The resulting data set may then be copied into the output. For this example, we will consider first the “Asc” direction. So we start with the remaining
portion of the route mile 0 to mile 4. Then we add in any breaks within the 0 to 4 milepoint range from the NETWORK_LINE_DIRECTIONS table. Since
NETWORK_LINE_DIRECTIONS has only 1 section covering 0 to 10 there are no extra breaks required and that leaves only 1 section from 0 to 4. Next
we apply any additional breaks on the “Asc” direction contained in the source data. Applying these breaks from the source data to the 0 to 4 section gives
use the sections listed below:

Route Dir Lane From To Crack Index AADT Pavement Type From Description To Description

999999 Asc All 0 1.5

999999 Asc All 1.5 2

999999 Asc All 2 2.3

999999 Asc All 2.3 4

Continuing with the Descending direction in the same manner gives the following output:

Route Dir Lane From To Crack Index AADT Pavement Type From Description To Description

999999 Desc All 0 1.5

999999 Desc All 1.5 2

999999 Desc All 2 2.3

999999 Desc All 2.3 2.6

999999 Desc All 3.2 3.5

999999 Desc All 3.5 4

Note that on the descending direction there is a “hole” in the data between 2.6 and 3.2 because the NETWORK_LINE_DIRECTIONS table does not cover
that portion of the route in the Desc direction.

The table below shows the results of the finest partitions together (from the three previous tables) with attribute information from the source data. For
clarity we have sorted the table below by “From” and ”Direction.”

Route Dir Lane From To Crack Index AADT Pavement Type From Description To Description

999999 Asc All 0 1.5 3.0 10,000 AC Start Route 999999 Intersection Route 999998

999999 Desc All 0 1.5 3.0 10,000 Composite Start Route 999999 Intersection Route 999998

999999 Asc All 1.5 2 3.0 10,000 AC Intersection Route 999998

999999 Desc All 1.5 2 3.0 10,000 Composite Intersection Route 999998

999999 Asc All 2 2.3 3.0 12,000 AC Driveway Left

1.
2.

3.

4.
5.

999999 Desc All 2 2.3 3.0 12,000 NULL Driveway Left

999999 Asc All 2.3 4 3.0 12,000 AC Driveway Left

999999 Desc All 2.3 2.6 3.0 12,000 NULL Driveway Left

999999 Desc All 3.2 3.5 3.0 12,000 NULL

999999 Desc All 3.5 4 3.0 12,000 Composite

999999 All All 4 5 3.2 9,000 AC

999999 All All 5 6 3.4 9,000 PCC

999999 All All 6 7 3.4 15,000 PCC Entrance Shopping Center

999999 All All 7 8.5 2.8 15,000 Composite Entrance Shopping Center Intersection Route 999997

999999 All All 8.5 10 2.8 15,000 Composite Intersection Route 999997

Finest Partition System Executable
Finest Partition system job executable allows the user to use one or multiple tables as the input and execute Finest Partition process as described in the
last section, and save the results into another target table (Finest Partition Report does not save the results into any table - it's a report). Finest Partition
executable only produces the resulted segment, and does not populate any attributes. Normally user will configure the result table to include any desired
attributes (columns), configure SQL, and executable Update Target Table command or executable to populate these columns.Update Target Table

There are two system Finest Parition executables: Finest Partition and Finest Partition by Column. The difference is explained in the following section.

To create and execute Finest Partition System Job, follow these steps:

Go to the System Schedules window, located under System > Tools > System Job > Schedules
In the Schedules pane (left pane), insert a new system job schedule and give it a name. Then in the Executables pane (right pane), insert Finest

 executable or executable.Partition Finest Partition by Column

Right-click the executable and select Define Argument(s)

Right click the executable and select “Define Argument(s)”.
If “ ” executable is used, a pop-up window shows up with 3 fields:Finest Partition

Input SQL Statement – This is an SQL query that returns all sections to be Finest Partitioned with their corresponding ROUTE_ID,
LANE_ID, LANE_DIR, OFFSET_FROM and OFFSET_TO from SETUP_LOC_IDENT table. When there are multiple tables as input, a
“UNION” keyword can be used to combine them. Below is an example that performance Finest Partition between PMS_ROADWAY_INV

 and table:ENTORY PMS_MGMT_SECTIONS

SELECT LA.ROUTE_ID, LA.LANE_ID, LA.LANE_DIR, LA.OFFSET_FROM, LA.OFFSET_TO
FROM PMS_ROADWAY_INVENTORY A, SETUP_LOC_IDENT LA
WHERE A.LOC_IDENT = LA.LOC_IDENT AND LA.SOURSE_TABLE = ‘PMS_ROADWAY_INVENTORY’
UNION
SELECT LA.ROUTE_ID, LA.LANE_ID, LA.LANE_DIR, LA.OFFSET_FROM, LA.OFFSET_TO
FROM PMS_MGMT_SECTIONS A, SETUP_LOC_IDENT LA
WHERE A.LOC_IDENT = LA.LOC_IDENT AND LA.SOURSE_TABLE = ‘PMS_MGMT_SECTIONS’

5.

6.

7.

8.

Note: Overlapping sections or duplicating sections are permitted in this Input SQL Statement. Finest Partition job will process them
accordingly and output the results based on the principles defined in the last section.
Target Table Name – This the table where the result segments from Finest Partition will be saved. This table must be a strictly Location-
referenced data table (see detailed discussion in AgileAssets System Foundation Configuration Guide, or on this link docs.agileassets.

)com
Delete Where Clause – This is an optional where clause that can be applied to Target Table. All records in the target table that match
the where clause will be deleted when running the Finest Partition executable. If left empty, all records in the target table will be deleted

If executable is used, a pop-up window shows up with 4 fields:Finest Partition by Column
Input SQL Statement – This is an SQL query that returns all sections to be Finest Partitioned with their corresponding ROUTE_ID,
LANE_ID, LANE_DIR, OFFSET_FROM and OFFSET_TO from SETUP_LOC_IDENT table. This argument is the same as the other
executable.
Target Table Name – This the table where the result segments from Finest Partition will be saved. This argument is the same as the
other executable.
Column ID and – When the executable is used, the system will first delete the records from the Target Table that Column Value Setup
match the Column ID argument and Column Value argument, then, after the Finest Partition output is saved to the Target Table, it will
also fill Column ID with the Column value.

Note: This function supports only one column.
Output of Finest Partition executable only includes the section definitions and will not automatically calculate the attributes (i.e., any columns
other than LOC_IDENT column in argument, or the Column ID column when using the “Finest Partition by Column” Target Table Name
executable). Therefore, the Finest Partition executable is typically followed by an “ ” executable, which fills in all attribute Update Target Table
values in the target table.

NOTE: To be able to use Update Target Table, the data aggregation SQL statement must be defined on the corresponding columns in the table.
Right-click and new System Schedule and select to run the Finest Partition job.Run Job

https://docs.agileassets.com/display/PD10/Tables
http://docs.agileassets.com
http://docs.agileassets.com

	Pavement Analyst Finest Partition

